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Spectral Domain Analysis of Interacting Microstrip
Resonant Structures

ARVIND K. SHARMA, MEMBER, IEEE, AND BHARATHI BHAT,
SENIOR MEMBER, 1EEE

Abstract — An analysis of the interacting microstrip resonant structures,
namely, the half-wave coupled and the quarter-wave coupled rectangular
microstrip resonators is performed with the hybrid-mode formulation of the
spectral domain technique. The resonant frequencies in the even and odd
resonance modes are evaluated from the numerical solution of the char-
acteristic equation. Results agree within + 1.5 percent of the experimental
values.

I. INTRODUCTION

Among various types of interacting resomant structures in
microwave integrated circuit applications, the half-wave coupled
and the quarter-wave coupled rectangular microstrip resonators
are extensively used as network elements. In such structures, the
propagation of waves is described in terms of the even and odd
modes [1]. There is some difference between the even- and
odd-mode phase velocities at lower microwave frequencies, but,
as the frequency of operation increases, the divergence in the
even- and odd-mode phase velocities becomes quite significant.
In directional couplers, this causes degradation of match, direc-
tivity and isolation. It causes spurious response and reduces the
operating bandwidth of filters. There have been many attempts,
in the past, to investigate the effect of unequal phase velocities
and to achieve their equalization [2]-[4].

In the above context, the study of interacting rectangular
microstrip resonators assumes considerable importance. The early
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Fig. 1. Interacting rectangular microstrip resonators: (a) half-wave coupled
parallel rectangular microstrip resonator; (b) quarter-wave coupled parallel
rectangular microstrip resonator.
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experimental work by Easter and Ritchings [5] provide some
background information to assess the predictability of resonant
frequencies in the even and odd resonance modes of a quarter-
wave coupled rectangular microstrip resonator. An exact analysis
of interacting resonant structures has been considered intrinsi-
cally difficult [6] and, therefore, there has not been any attempt
to determine the resonant frequencies of the abovementioned
structures. Consequently, various attempts to alleviate the effect
of unequal phase velocities on the performance of the directional
couplers and filters utilized the available information on the
coupled microstrip lines.

In this paper, we have utilized the hybrid-mode formulation in
the spectral domain to analyze these resonant structures. The
divergence in the even- and odd-mode phase velocities of the
abovementioned structures is thus determined in terms of their
resonant frequencies.

II. ANALYSIS

The interacting rectangular microstrip resonant structures in a
shielding waveguide configuration are shown in Fig. 1. The basic
building block in each case is a rectangular microstrip resonator
of length 2/ and width 2w. The shielding waveguide has dimen-
sions 2a and d + h. The dielectric substrate of relative permittiv-
ity €, has thickness d above the ground plane.

In the spectral domain analysis of the structure [7]-[11], the
Fourier transform of the dyadic Green’s functions are related to
the transforms of the current densities on the conductors and the
electric fields in the region of the interface complementary to the
conductors, via the equation

Gll(,enaﬂﬁko) élz(l’énaﬂsko) ~xc(l’c‘n’B
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where k, and 8 are the Fourier transform variables, and k, is the
free-space wavenumber. J, ., J.., E,., and E,. are the current
densities on the interacting conductors and electric fields in the
region of the interface complementary to the conductors, respec-
tively. Gy, Gz, Gy, and G,, are the transformed Green’s func-
tions. With the application of Galerkin’s procedure and Parseval’s
theorem, we obtain a set of algebraic equations in terms of the
unknown constants of the basis functions. For a given structure,
a nontrivial solution of the wavenumber k,, is obtained by setting
the determinant of the coefficient matrix equal to zero and
finding the root of the equation.

III1.

The current density distribution functions on an interacting
rectangular microstrip resonator can be easily obtained from that
of its building block, the rectangular microstrip resonator. If J
and J, are the longitudinal and transverse current densities,
respectively, on a rectangular microstrip resonator, then the cor-
responding current densities .J,. and J,. on the interacting micro-
strip resonators can be written in terms of them as follows.

CURRENT DENSITY FUNCTIONS

A. Half-Wave Coupled Parallel Rectangular Microstrip
Resonators

LetJ )zc(l)(l%,,, B) and J 5}(2)(]%"’ B) refer to the Fourier transform

of current densities on the resonator to the left of the origin (strip
1) and to the right of the origin (strip 2), respectively. Then, with
the shift theorem, we get

j_i(l)(len’ﬂ) — eA,/E,,(s+w)j§(]gn’B) )

©)

In the even mode, the longitudinal currents on both the strips are
equal in magnitude while in the odd mode, they are equal in
magnitude but opposite in phase. Taking this into account, we
write

J:O(k,,B)= e//:,.(HW)ji(]Qn”B).

jig(ién,ﬁ) — [i 8€_j12"(s+w)+ ej/:,.(s+w)]j)zc(]€n,ﬂ) (4)

with 8 = +1 in even mode, —1 in odd mode, and the positive
sign before the quantity 8 is taken for the z-directed current and
the negative sign is taken for the x-directed current.

B. Quarter-Wave Coupled Parallel Rectangular Microstrip
Resonators

- The quarter-wave coupled resonator configuration is obtained
from the half-wave coupled resonator by introducing a shift of
1/2 in + z and — z directions in the strip 1 and 2, respectively.
Then

FO(k,,B) =2tk W, (£ B)

()
(©)

and the current densities in the even and odd mode are given by

Tec(kyyB) = [ 8e B2 katstm] . mlBl/2=knto ]|

j)zc(/%n"B) (7

where 8 and the sign preceding dare defined in Section III-A.

In the above expressions, appropriate distributions of the
longitudinal and transverse current densities are required. Fol-
lowing the analysis of microstrip resonators presented by Itoh [7],
it is prudent to assume basis functions which approximate the
actual current distributions. Thus, J, and J, for the dominant

J:®(k,,B) = e—J/?’/2eﬂ:,.(-°+w)j§(]€mﬁ)
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mode are assumed to have the following form:
J(x,2) =T (x)),(2) (8)
T (x,2) =I5 (x)Ja(2) )

where the functions J,(x), J,(z), J3(x), and J,(z) appearing
above and their transforms are given in [7].

IV. NUMERICAL AND EXPERIMENTAL RESULTS

A computer program was developed to evaluate resonant fre-
quencies of interacting rectangular microstrip resonators in the
even and odd resonance modes. This program was first verified
by comparing the results of a rectangular microstrip resonator
with those reported by Itoh [7]. In the computations, the inner
products and the roots of the characteristic equation were
evaluated with an accuracy up to four significant digits or more.
These error criteria are required to exit from integration and root
searching routines.

The resonant frequencies of the interacting microstrip resona-
tors were evaluated using the above computer program with
appropriate modifications in the current densities corresponding
to the physical configurations. In each case, they were evaluated
by taking into account both longitudinal and transverse current
densities, and compared with those obtained by taking into
account longitudinal current density only for various structural
parameters. The numerical values were observed to be in good
agreement. This means that the effect of the transverse current
density for interacting microstrip resonators is negligible as long
as microstrip width is much less than the half-wavelength in the
dielectric medium. Therefore, the numerical results presented in
this paper have been evaluated by taking into account longitudi-
nal current density only.

The experimental resonant frequencies were obtained for mi-
crostrip resonators fabricated on an Epsilam-10 substrate (¢, =
10.2). They were coupled to a 50-Q microstrip line at the input
and output ports. The capacitive coupling between the microstrip
and the resonator was optimized such that the influence of this
gap on the resonant frequency was negligible. The even- and
odd-mode resonant frequencies were measured in the transmis-
sion mode. The numerical and experimental results for cach
configuration are discussed in the following paragraphs.

A. Half-Wave Coupled Parallel Rectangular Microstrip
Resonators

The even- and odd-mode resonant frequencies for the half-wave
coupled rectangular resonators have been numerically evaluated
with the computer program described above. The resuits have
been obtained for resonators with various normalized widths
(2w/d), normalized gaps (2s5/d), and lengths (2/). In Fig, 2(a)
and (b), the effect of varying 2w/d and 2s/d is plotted for
various resonator lengths while keeping the other parameters
fixed. The resonant frequencies in both the modes decrease
considerably with 2w/d for 2s/d = 0.1. For the fixed value of
2w/d =1.0, increasing 2s/d decreases the even- and odd-mode
resonant frequencies only slightly. This behavior may appear
somewhat different from what we normally expect, that is, with
an increase in 2s/d, the resonant frequency in the even mode
should increase and in the odd mode it should decrease, and
finally, it should converge to the resonant frequency of a single
microstrip resonator. However, the present behavior is an overall
effect since this analysis takes into account the interactions
between the resonators as well as the influences of the shielding
enclosure. The experimental verification of the resonant frequen-
cies in the even and odd modes is provided in Fig. 2(c) and (d)
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Fig. 2. Resonant frequencies in the even and odd modes for half-wave coupled rectangular microstrip resonators as a function of: (2)
2w/d with 25/d = 0.1; (b) 25 /d with 2w/d =1.0; (c) and (d) resonator length 2/ with 2w/d =1.0 and 1.5, respectively. 2a =1.27

cm; d+h=127 cm; d =0.0635 cm; and ¢, =10.2.

for 2w/d =1.0 and 1.5, respectively, for 2s5/d = 0.1, 0.3, and 0.5.
These results agree with +1.5 percent. The Q-factors of these
resonators were observed to be in the range of 100-200.

B. Quarter-Wave Coupled Parallel Rectangular Microstrip
Resonators

Similar study on the quarter-wave coupled rectangular resona-
tors show that its resonance behavior is substantially different
from that of half-wave coupled rectangular resonators. This is
evident from Fig. 3(a) and (b) where the resonant frequencies are
plotted against 2w/d and 2s/d, respectively. The difference in
the even- and odd-mode resonant frequencies is observed to be
more than that of the half-wave coupled resonators. Fig. 3(a)

shows that for a fixed value of 2s/d=0.1, the even-mode
resonant frequency increases while the odd-mode resonant
frequency decreases with increasing 2w/d. Similar trend is ob-
served from Fig. 3(b) for resonant frequencies as a function of
25 /d. These resonant frequencies agree within +1.5 percent with
the experimental values, as shown in Fig. 3(c).

V. CONCLUSIONS

In this paper, we have presented an analysis of various interact-
ing resonant structures with the full-wave formulation of the
spectral domain technique. The resonant frequencies of the half-
wave coupled and the quarter-wave coupled rectangular micro-
strip resonators in the even and odd resonance modes have been
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Resonant frequencies in the even and odd modes for quarter-wave coupled rectangular microstrip resonators as a function of:

(a) 2w/d with 2s /d = 0.1; (b) 25 /d with 2w/d =1.0; (¢) and (d) resonator length 2/ with 2w/d =1.0 and 1.5, respectively. 2a =1.27

cm; d+h =127 cm; d=0.0635 cm; and ¢, =10.2.

evaluated. The numerical results evaluated by taking into account
longitudinal current density compare very well with those com-
puted by taking into account both longitudinal and transverse
current densities for the structural parameters reported here. The
numerical accuracy and efficiency of this technique are achieved
by selecting basis functions which approximately represent the
actual currents on the resonators. However, the computational
accuracy may degrade for small values of 2s which corresponds
to tightly coupled resonators. This is mainly due to the choice of
basis functions used in this investigation. The computer time for
a typical computation is about 150 s per structure in each
resonance mode on an ICL 1909 (UK) system which is about
four to five times slower than an IBM 360 system. The agreement
between the theoretical and experimental resonant frequencies

has been observed to be within +1.5 percent. This shows that the
divergence in the even- and odd-mode phase velocities can be
accurately predicted with the present analysis which takes into
account the interactions between the resonant structures as well
as the influences of the shielding waveguide.

REFERENCES

f11 G. L Zysman and A. K. Johnson, “Coupled transmission line networks
in an inhomogeneous medium,” IEEE Trans. Microwave Theory Tech.,
vol. MTT-17, pp. 753-759, Oct. 1969.

[2] F.C. de Ronde, “Recent development in broadband directional couplers
on microstrip,” in 1972 IEEE MTT-S Int. Microwave Symp. Dig., pp.
215~217.

[3] B. Shelag and B. E. Spiclman, “Broadband directional couplers using
microstrip and dielectric overlays,” IEEE Trans. Microwave Theory Tech.,
vol. MTT-22, pp. 1216-1220, Dec. 1974.



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-31, NO. 8, AUGUST 1983

[4] A.E. Ross and D. Pompei, “Improvement of performances of microstrip
structures by equalization of phase velocities,” in 1978 IEEE MTT-S Int.
Microwave Symp. Dig., pp. 41-43.

[5] B. Easter and J. G. Richings, “Effects associated with radiation in
coupled half-wave open circuit microstrip resonators,” Electron. Lett.,
vol. 8, pp. 198-199, June 1972.

[6] R. H. Jansen, “Computer analysis of edge coupled planar structures,”
Electron. Lett., vol. 10, pp. 520-522, Nov. 1974.

[71 T. Itoh, “Analysis of microstrip resonators,” IEEE Trans. Microwave
Theory Tech., vol. MTT-22, pp. 946-952, Nov. 1974,

[8] A. K. Sharma and B. Bhat, “Spectral domain analysis of discontinuity
microstrip structures,” presented at 1981 National Radio Science Meet-
ing (Los Angeles, CA), June 15-19, 1981.

{91 A. K. Sharma and B. Bhat, “Analysis of interacting rectangular micro-

strip resonators,” presented at Int. Electrical, Electronics Conf. and

Expos. (Toronto, Canada), Oct. 5-7, 1981.

A. K. Sharma and B. Bhat, “Analysis of microstrip resonant structures,”

presented at Int. Symp. Microwaves and Communication (Kharagpur,

India), Dec. 29-30, 1981, paper MN 3.7.

A. K. Sharma, “Spectral domain analysis of microstrip resonant struc-

tures,” Ph.D. Thesis, Indian Institute of Technology, Delhi, December

1979.

[10]

11}

An Accurate Bivariate Formulation for Computer-Aided
Design of Circuits Including Microstrip

Y. L. CHUA, I. B. DAVIES, anp D. MIRSHEKAR-SYAHKAL

Abstract — An accurate and fast bivariate interpolation technique is used
to compute the microstrip parameters at an arbitrary frequency and of any
strip width. This technique allows computation of the effective dielectric
constant, characteristic impedance, dielectric loss, and the conductor loss
of microstrip in a time appropriate for computer-aided design application.
By combining interpolation techniques with a highly accurate theory,
computing is more accurate or faster than earlier theories, which achieve
speed of computation by a priori approximations.

I. INTRODUCTION

Various theories exist for microstrip -and related planar lines
which are ‘exact-in-the-limit.” Properly implemented, these result
in a computer program where for any analysis the designer can
choose between an approximate, cheap result and an accurate,
expensive result, the cost being measured in computer time and
possibly computer storage. Similar to the approximate, cheap
result, is the use of an a priori approximate theory, such as the
many quasi-TEM theories, and approximate frequency-depen-
dent theories [1], [2]. However, for interactive computer-aided
design (CAD), and on other occasions, the time or cost of the
accurate results may not be acceptable, and the designer has to
make an awkward compromise.

The purpose of this paper is to show how the accurate results
of a microstrip analysis program [3], [4] can be used to provide
the data base for a-subsequent program which in turn can give
accurate and fast results over some specified range of parameters,
such as frequency and strip width. It involves essentially bivariate
interpolation over specified ranges, and as such, the method can
be applied to many two-parameter problems. In this paper, the
technique is illustrated with the accurate evaluation of four
microstrip characteristics (phase velocity, characteristic imped-
ance, attenuation due to conductor losses, and dielectric losses).
Based on a published computer program [4], the computing times
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(a) Cross-section view of planar MIC structure analyzable by the
computer program of {4]. (b) Shielded microstrip line.

Fig. 1.

are reduced by a factor of a hundred or more in calculating these
four characteristics over a continuous range of frequencies and of
strip width.

II. THEORY

The theory of this paper is applied and illustrated with just the
one basic computer program, one for the accurate analysis of
microstrip, but its application to similar programs is implicit.

Reference [4] describes a program that considers the cross sec-
tions of Fig. 1(a), and for either single or coupled microstrip
calculates the effective dielectric constant e (or phase velocity).
Then, if required, it calculates the characteristic impedance Z_,
attenuation due to imperfect conductor a,, and attenuation due
to imperfect dielectric a .

Though the program is efficient in its class, it is still slow for
CAD purposes. If results of the program €, Z,, a,, and a, are
obtained over the range of specified strip widths w' and frequen-
cies f, §ets of this data can be considered as bivariate functions of
w and f. We assume that the designer has control of, or needs
results of, continuous parameters w and f, whereas the dielectric
thickness and permittivity are of discrete values dictated by the
substrate manufacturer. Other parameters affecting the results are
the height and width of the conducting enclosure. These can be
fixed at certain acceptable dimensions, possibly large enough to
have negligible influence on €., etc.

Having generated the ‘data sets, the objective is to find a
suitable bivariate interpolation scheme which can accurately and
efficiently give the values of e, Z_, a,, and a, at any (w, f)
values—not just at the data set points. Since accuracy and high
efficiency are prerequisites for the interpolating method, the
‘spline’ technique using a ‘tensor product’ algorithm has been
found to fulfill the requirements [5]. There are other methods for
interpolation in one dimension, but their effectiveness for two-
dimensional problems is subject to dispute [6].

Spline interpolation by means of the basis-spline function is a
relatively new technique. Evolved through research on piecewise
polynomial interpolation, it has gained importance in numerical
analysis. It is widely used in computer graphic software, where
extra smoothness, fast system response, and good interpolating
accuracy arc needed [7]. To interpolate with spline functions,
details can be found in [5], [7]. However, a brief account seems
appropriate for its use for the microstrip line.

We consider the one-dimensional spline technique first, the
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